Metamath Proof Explorer


Theorem arwrcl

Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis arwrcl.a A=ArrowC
Assertion arwrcl FACCat

Proof

Step Hyp Ref Expression
1 arwrcl.a A=ArrowC
2 df-arw Arrow=cCatranHomac
3 2 dmmptss domArrowCat
4 elfvdm FArrowCCdomArrow
5 4 1 eleq2s FACdomArrow
6 3 5 sselid FACCat