Metamath Proof Explorer


Theorem asinrecl

Description: The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinrecl A11arcsinA

Proof

Step Hyp Ref Expression
1 halfpire π2
2 1 renegcli π2
3 iccssre π2π2π2π2
4 2 1 3 mp2an π2π2
5 asinrebnd A11arcsinAπ2π2
6 4 5 sselid A11arcsinA