Metamath Proof Explorer


Theorem assintopass

Description: An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009) (Revised by AV, 20-Jan-2020)

Ref Expression
Assertion assintopass Could not format assertion : No typesetting found for |- ( .o. e. ( assIntOp ` M ) -> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 id Could not format ( .o. e. ( assIntOp ` M ) -> .o. e. ( assIntOp ` M ) ) : No typesetting found for |- ( .o. e. ( assIntOp ` M ) -> .o. e. ( assIntOp ` M ) ) with typecode |-
2 elfvex Could not format ( .o. e. ( assIntOp ` M ) -> M e. _V ) : No typesetting found for |- ( .o. e. ( assIntOp ` M ) -> M e. _V ) with typecode |-
3 assintopasslaw Could not format ( .o. e. ( assIntOp ` M ) -> .o. assLaw M ) : No typesetting found for |- ( .o. e. ( assIntOp ` M ) -> .o. assLaw M ) with typecode |-
4 isasslaw Could not format ( ( .o. e. ( assIntOp ` M ) /\ M e. _V ) -> ( .o. assLaw M <-> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) : No typesetting found for |- ( ( .o. e. ( assIntOp ` M ) /\ M e. _V ) -> ( .o. assLaw M <-> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-
5 3 4 syl5ibcom Could not format ( .o. e. ( assIntOp ` M ) -> ( ( .o. e. ( assIntOp ` M ) /\ M e. _V ) -> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) : No typesetting found for |- ( .o. e. ( assIntOp ` M ) -> ( ( .o. e. ( assIntOp ` M ) /\ M e. _V ) -> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) with typecode |-
6 1 2 5 mp2and Could not format ( .o. e. ( assIntOp ` M ) -> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) : No typesetting found for |- ( .o. e. ( assIntOp ` M ) -> A. x e. M A. y e. M A. z e. M ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) with typecode |-