Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ⚬ ∈ ( assIntOp ‘ 𝑀 ) ) |
2 |
|
elfvex |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → 𝑀 ∈ V ) |
3 |
|
assintopasslaw |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ⚬ assLaw 𝑀 ) |
4 |
|
isasslaw |
⊢ ( ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ∧ 𝑀 ∈ V ) → ( ⚬ assLaw 𝑀 ↔ ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
5 |
3 4
|
syl5ibcom |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ( ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) ∧ 𝑀 ∈ V ) → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
6 |
1 2 5
|
mp2and |
⊢ ( ⚬ ∈ ( assIntOp ‘ 𝑀 ) → ∀ 𝑥 ∈ 𝑀 ∀ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) |