Metamath Proof Explorer


Theorem assintopass

Description: An associative (closed internal binary) operation for a set is associative. (Contributed by FL, 2-Nov-2009) (Revised by AV, 20-Jan-2020)

Ref Expression
Assertion assintopass ( ∈ ( assIntOp ‘ 𝑀 ) → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ( 𝑥 𝑦 ) 𝑧 ) = ( 𝑥 ( 𝑦 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 id ( ∈ ( assIntOp ‘ 𝑀 ) → ∈ ( assIntOp ‘ 𝑀 ) )
2 elfvex ( ∈ ( assIntOp ‘ 𝑀 ) → 𝑀 ∈ V )
3 assintopasslaw ( ∈ ( assIntOp ‘ 𝑀 ) → assLaw 𝑀 )
4 isasslaw ( ( ∈ ( assIntOp ‘ 𝑀 ) ∧ 𝑀 ∈ V ) → ( assLaw 𝑀 ↔ ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ( 𝑥 𝑦 ) 𝑧 ) = ( 𝑥 ( 𝑦 𝑧 ) ) ) )
5 3 4 syl5ibcom ( ∈ ( assIntOp ‘ 𝑀 ) → ( ( ∈ ( assIntOp ‘ 𝑀 ) ∧ 𝑀 ∈ V ) → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ( 𝑥 𝑦 ) 𝑧 ) = ( 𝑥 ( 𝑦 𝑧 ) ) ) )
6 1 2 5 mp2and ( ∈ ( assIntOp ‘ 𝑀 ) → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ( 𝑥 𝑦 ) 𝑧 ) = ( 𝑥 ( 𝑦 𝑧 ) ) )