Metamath Proof Explorer


Theorem assraddsubi

Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses assraddsubi.1 B
assraddsubi.2 C
assraddsubi.3 D
assraddsubi.4 A = B + C - D
Assertion assraddsubi A = B + C - D

Proof

Step Hyp Ref Expression
1 assraddsubi.1 B
2 assraddsubi.2 C
3 assraddsubi.3 D
4 assraddsubi.4 A = B + C - D
5 1 2 3 addsubassi B + C - D = B + C - D
6 4 5 eqtri A = B + C - D