Metamath Proof Explorer


Theorem assraddsubi

Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses assraddsubi.1
|- B e. CC
assraddsubi.2
|- C e. CC
assraddsubi.3
|- D e. CC
assraddsubi.4
|- A = ( ( B + C ) - D )
Assertion assraddsubi
|- A = ( B + ( C - D ) )

Proof

Step Hyp Ref Expression
1 assraddsubi.1
 |-  B e. CC
2 assraddsubi.2
 |-  C e. CC
3 assraddsubi.3
 |-  D e. CC
4 assraddsubi.4
 |-  A = ( ( B + C ) - D )
5 1 2 3 addsubassi
 |-  ( ( B + C ) - D ) = ( B + ( C - D ) )
6 4 5 eqtri
 |-  A = ( B + ( C - D ) )