Metamath Proof Explorer


Theorem joinlmuladdmuli

Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)

Ref Expression
Hypotheses joinlmuladdmuli.1
|- A e. CC
joinlmuladdmuli.2
|- B e. CC
joinlmuladdmuli.3
|- C e. CC
joinlmuladdmuli.4
|- ( ( A x. B ) + ( C x. B ) ) = D
Assertion joinlmuladdmuli
|- ( ( A + C ) x. B ) = D

Proof

Step Hyp Ref Expression
1 joinlmuladdmuli.1
 |-  A e. CC
2 joinlmuladdmuli.2
 |-  B e. CC
3 joinlmuladdmuli.3
 |-  C e. CC
4 joinlmuladdmuli.4
 |-  ( ( A x. B ) + ( C x. B ) ) = D
5 1 a1i
 |-  ( T. -> A e. CC )
6 2 a1i
 |-  ( T. -> B e. CC )
7 3 a1i
 |-  ( T. -> C e. CC )
8 4 a1i
 |-  ( T. -> ( ( A x. B ) + ( C x. B ) ) = D )
9 5 6 7 8 joinlmuladdmuld
 |-  ( T. -> ( ( A + C ) x. B ) = D )
10 9 mptru
 |-  ( ( A + C ) x. B ) = D