Metamath Proof Explorer


Theorem joinlmulsubmuld

Description: Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 15-Oct-2018)

Ref Expression
Hypotheses joinlmulsubmuld.1
|- ( ph -> A e. CC )
joinlmulsubmuld.2
|- ( ph -> B e. CC )
joinlmulsubmuld.3
|- ( ph -> C e. CC )
joinlmulsubmuld.4
|- ( ph -> ( ( A x. B ) - ( C x. B ) ) = D )
Assertion joinlmulsubmuld
|- ( ph -> ( ( A - C ) x. B ) = D )

Proof

Step Hyp Ref Expression
1 joinlmulsubmuld.1
 |-  ( ph -> A e. CC )
2 joinlmulsubmuld.2
 |-  ( ph -> B e. CC )
3 joinlmulsubmuld.3
 |-  ( ph -> C e. CC )
4 joinlmulsubmuld.4
 |-  ( ph -> ( ( A x. B ) - ( C x. B ) ) = D )
5 1 3 2 subdird
 |-  ( ph -> ( ( A - C ) x. B ) = ( ( A x. B ) - ( C x. B ) ) )
6 5 4 eqtrd
 |-  ( ph -> ( ( A - C ) x. B ) = D )