Description: Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 15-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinlmulsubmuld.1 | |- ( ph -> A e. CC ) | |
| joinlmulsubmuld.2 | |- ( ph -> B e. CC ) | ||
| joinlmulsubmuld.3 | |- ( ph -> C e. CC ) | ||
| joinlmulsubmuld.4 | |- ( ph -> ( ( A x. B ) - ( C x. B ) ) = D ) | ||
| Assertion | joinlmulsubmuld | |- ( ph -> ( ( A - C ) x. B ) = D ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | joinlmulsubmuld.1 | |- ( ph -> A e. CC ) | |
| 2 | joinlmulsubmuld.2 | |- ( ph -> B e. CC ) | |
| 3 | joinlmulsubmuld.3 | |- ( ph -> C e. CC ) | |
| 4 | joinlmulsubmuld.4 | |- ( ph -> ( ( A x. B ) - ( C x. B ) ) = D ) | |
| 5 | 1 3 2 | subdird | |- ( ph -> ( ( A - C ) x. B ) = ( ( A x. B ) - ( C x. B ) ) ) | 
| 6 | 5 4 | eqtrd | |- ( ph -> ( ( A - C ) x. B ) = D ) |