Description: Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 15-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | joinlmulsubmuld.1 | |- ( ph -> A e. CC ) |
|
joinlmulsubmuld.2 | |- ( ph -> B e. CC ) |
||
joinlmulsubmuld.3 | |- ( ph -> C e. CC ) |
||
joinlmulsubmuld.4 | |- ( ph -> ( ( A x. B ) - ( C x. B ) ) = D ) |
||
Assertion | joinlmulsubmuld | |- ( ph -> ( ( A - C ) x. B ) = D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmulsubmuld.1 | |- ( ph -> A e. CC ) |
|
2 | joinlmulsubmuld.2 | |- ( ph -> B e. CC ) |
|
3 | joinlmulsubmuld.3 | |- ( ph -> C e. CC ) |
|
4 | joinlmulsubmuld.4 | |- ( ph -> ( ( A x. B ) - ( C x. B ) ) = D ) |
|
5 | 1 3 2 | subdird | |- ( ph -> ( ( A - C ) x. B ) = ( ( A x. B ) - ( C x. B ) ) ) |
6 | 5 4 | eqtrd | |- ( ph -> ( ( A - C ) x. B ) = D ) |