Metamath Proof Explorer


Theorem joinlmulsubmuld

Description: Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 15-Oct-2018)

Ref Expression
Hypotheses joinlmulsubmuld.1 φ A
joinlmulsubmuld.2 φ B
joinlmulsubmuld.3 φ C
joinlmulsubmuld.4 φ A B C B = D
Assertion joinlmulsubmuld φ A C B = D

Proof

Step Hyp Ref Expression
1 joinlmulsubmuld.1 φ A
2 joinlmulsubmuld.2 φ B
3 joinlmulsubmuld.3 φ C
4 joinlmulsubmuld.4 φ A B C B = D
5 1 3 2 subdird φ A C B = A B C B
6 5 4 eqtrd φ A C B = D