Description: Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 15-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | joinlmulsubmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
joinlmulsubmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
joinlmulsubmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
joinlmulsubmuld.4 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) = 𝐷 ) | ||
Assertion | joinlmulsubmuld | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) · 𝐵 ) = 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmulsubmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | joinlmulsubmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | joinlmulsubmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
4 | joinlmulsubmuld.4 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) = 𝐷 ) | |
5 | 1 3 2 | subdird | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) ) |
6 | 5 4 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) · 𝐵 ) = 𝐷 ) |