Description: Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 15-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinlmulsubmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| joinlmulsubmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| joinlmulsubmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| joinlmulsubmuld.4 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) = 𝐷 ) | ||
| Assertion | joinlmulsubmuld | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) · 𝐵 ) = 𝐷 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | joinlmulsubmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | joinlmulsubmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | joinlmulsubmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | joinlmulsubmuld.4 | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) = 𝐷 ) | |
| 5 | 1 3 2 | subdird | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) ) | 
| 6 | 5 4 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) · 𝐵 ) = 𝐷 ) |