Metamath Proof Explorer


Theorem joinlmulsubmuld

Description: Join AB-CB into (A-C) on LHS. (Contributed by David A. Wheeler, 15-Oct-2018)

Ref Expression
Hypotheses joinlmulsubmuld.1 ( 𝜑𝐴 ∈ ℂ )
joinlmulsubmuld.2 ( 𝜑𝐵 ∈ ℂ )
joinlmulsubmuld.3 ( 𝜑𝐶 ∈ ℂ )
joinlmulsubmuld.4 ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) = 𝐷 )
Assertion joinlmulsubmuld ( 𝜑 → ( ( 𝐴𝐶 ) · 𝐵 ) = 𝐷 )

Proof

Step Hyp Ref Expression
1 joinlmulsubmuld.1 ( 𝜑𝐴 ∈ ℂ )
2 joinlmulsubmuld.2 ( 𝜑𝐵 ∈ ℂ )
3 joinlmulsubmuld.3 ( 𝜑𝐶 ∈ ℂ )
4 joinlmulsubmuld.4 ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) = 𝐷 )
5 1 3 2 subdird ( 𝜑 → ( ( 𝐴𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) − ( 𝐶 · 𝐵 ) ) )
6 5 4 eqtrd ( 𝜑 → ( ( 𝐴𝐶 ) · 𝐵 ) = 𝐷 )