Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | joinlmuladdmuli.1 | ⊢ 𝐴 ∈ ℂ | |
joinlmuladdmuli.2 | ⊢ 𝐵 ∈ ℂ | ||
joinlmuladdmuli.3 | ⊢ 𝐶 ∈ ℂ | ||
joinlmuladdmuli.4 | ⊢ ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 | ||
Assertion | joinlmuladdmuli | ⊢ ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlmuladdmuli.1 | ⊢ 𝐴 ∈ ℂ | |
2 | joinlmuladdmuli.2 | ⊢ 𝐵 ∈ ℂ | |
3 | joinlmuladdmuli.3 | ⊢ 𝐶 ∈ ℂ | |
4 | joinlmuladdmuli.4 | ⊢ ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 | |
5 | 1 | a1i | ⊢ ( ⊤ → 𝐴 ∈ ℂ ) |
6 | 2 | a1i | ⊢ ( ⊤ → 𝐵 ∈ ℂ ) |
7 | 3 | a1i | ⊢ ( ⊤ → 𝐶 ∈ ℂ ) |
8 | 4 | a1i | ⊢ ( ⊤ → ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 ) |
9 | 5 6 7 8 | joinlmuladdmuld | ⊢ ( ⊤ → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 ) |
10 | 9 | mptru | ⊢ ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 |