Metamath Proof Explorer


Theorem joinlmuladdmuli

Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)

Ref Expression
Hypotheses joinlmuladdmuli.1 𝐴 ∈ ℂ
joinlmuladdmuli.2 𝐵 ∈ ℂ
joinlmuladdmuli.3 𝐶 ∈ ℂ
joinlmuladdmuli.4 ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷
Assertion joinlmuladdmuli ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷

Proof

Step Hyp Ref Expression
1 joinlmuladdmuli.1 𝐴 ∈ ℂ
2 joinlmuladdmuli.2 𝐵 ∈ ℂ
3 joinlmuladdmuli.3 𝐶 ∈ ℂ
4 joinlmuladdmuli.4 ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷
5 1 a1i ( ⊤ → 𝐴 ∈ ℂ )
6 2 a1i ( ⊤ → 𝐵 ∈ ℂ )
7 3 a1i ( ⊤ → 𝐶 ∈ ℂ )
8 4 a1i ( ⊤ → ( ( 𝐴 · 𝐵 ) + ( 𝐶 · 𝐵 ) ) = 𝐷 )
9 5 6 7 8 joinlmuladdmuld ( ⊤ → ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷 )
10 9 mptru ( ( 𝐴 + 𝐶 ) · 𝐵 ) = 𝐷