Metamath Proof Explorer
		
		
		
		Description:  Associate RHS addition-subtraction.  (Contributed by David A. Wheeler, 11-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | assraddsubi.1 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | assraddsubi.2 | ⊢ 𝐶  ∈  ℂ | 
					
						|  |  | assraddsubi.3 | ⊢ 𝐷  ∈  ℂ | 
					
						|  |  | assraddsubi.4 | ⊢ 𝐴  =  ( ( 𝐵  +  𝐶 )  −  𝐷 ) | 
				
					|  | Assertion | assraddsubi | ⊢  𝐴  =  ( 𝐵  +  ( 𝐶  −  𝐷 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | assraddsubi.1 | ⊢ 𝐵  ∈  ℂ | 
						
							| 2 |  | assraddsubi.2 | ⊢ 𝐶  ∈  ℂ | 
						
							| 3 |  | assraddsubi.3 | ⊢ 𝐷  ∈  ℂ | 
						
							| 4 |  | assraddsubi.4 | ⊢ 𝐴  =  ( ( 𝐵  +  𝐶 )  −  𝐷 ) | 
						
							| 5 | 1 2 3 | addsubassi | ⊢ ( ( 𝐵  +  𝐶 )  −  𝐷 )  =  ( 𝐵  +  ( 𝐶  −  𝐷 ) ) | 
						
							| 6 | 4 5 | eqtri | ⊢ 𝐴  =  ( 𝐵  +  ( 𝐶  −  𝐷 ) ) |