Metamath Proof Explorer


Theorem assraddsubi

Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses assraddsubi.1 𝐵 ∈ ℂ
assraddsubi.2 𝐶 ∈ ℂ
assraddsubi.3 𝐷 ∈ ℂ
assraddsubi.4 𝐴 = ( ( 𝐵 + 𝐶 ) − 𝐷 )
Assertion assraddsubi 𝐴 = ( 𝐵 + ( 𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 assraddsubi.1 𝐵 ∈ ℂ
2 assraddsubi.2 𝐶 ∈ ℂ
3 assraddsubi.3 𝐷 ∈ ℂ
4 assraddsubi.4 𝐴 = ( ( 𝐵 + 𝐶 ) − 𝐷 )
5 1 2 3 addsubassi ( ( 𝐵 + 𝐶 ) − 𝐷 ) = ( 𝐵 + ( 𝐶𝐷 ) )
6 4 5 eqtri 𝐴 = ( 𝐵 + ( 𝐶𝐷 ) )