Metamath Proof Explorer
Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 11-Oct-2018)
|
|
Ref |
Expression |
|
Hypotheses |
assraddsubi.1 |
⊢ 𝐵 ∈ ℂ |
|
|
assraddsubi.2 |
⊢ 𝐶 ∈ ℂ |
|
|
assraddsubi.3 |
⊢ 𝐷 ∈ ℂ |
|
|
assraddsubi.4 |
⊢ 𝐴 = ( ( 𝐵 + 𝐶 ) − 𝐷 ) |
|
Assertion |
assraddsubi |
⊢ 𝐴 = ( 𝐵 + ( 𝐶 − 𝐷 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
assraddsubi.1 |
⊢ 𝐵 ∈ ℂ |
2 |
|
assraddsubi.2 |
⊢ 𝐶 ∈ ℂ |
3 |
|
assraddsubi.3 |
⊢ 𝐷 ∈ ℂ |
4 |
|
assraddsubi.4 |
⊢ 𝐴 = ( ( 𝐵 + 𝐶 ) − 𝐷 ) |
5 |
1 2 3
|
addsubassi |
⊢ ( ( 𝐵 + 𝐶 ) − 𝐷 ) = ( 𝐵 + ( 𝐶 − 𝐷 ) ) |
6 |
4 5
|
eqtri |
⊢ 𝐴 = ( 𝐵 + ( 𝐶 − 𝐷 ) ) |