Metamath Proof Explorer


Theorem atantanb

Description: Relationship between tangent and arctangent. (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion atantanb AdomarctanBBπ2π2arctanA=BtanB=A

Proof

Step Hyp Ref Expression
1 tanatan AdomarctantanarctanA=A
2 1 3ad2ant1 AdomarctanBBπ2π2tanarctanA=A
3 fveqeq2 arctanA=BtanarctanA=AtanB=A
4 2 3 syl5ibcom AdomarctanBBπ2π2arctanA=BtanB=A
5 atantan BBπ2π2arctantanB=B
6 5 3adant1 AdomarctanBBπ2π2arctantanB=B
7 fveqeq2 tanB=AarctantanB=BarctanA=B
8 6 7 syl5ibcom AdomarctanBBπ2π2tanB=AarctanA=B
9 4 8 impbid AdomarctanBBπ2π2arctanA=BtanB=A