| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tanatan | ⊢ ( 𝐴  ∈  dom  arctan  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  𝐵  ∈  ℂ  ∧  ( ℜ ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 3 |  | fveqeq2 | ⊢ ( ( arctan ‘ 𝐴 )  =  𝐵  →  ( ( tan ‘ ( arctan ‘ 𝐴 ) )  =  𝐴  ↔  ( tan ‘ 𝐵 )  =  𝐴 ) ) | 
						
							| 4 | 2 3 | syl5ibcom | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  𝐵  ∈  ℂ  ∧  ( ℜ ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( ( arctan ‘ 𝐴 )  =  𝐵  →  ( tan ‘ 𝐵 )  =  𝐴 ) ) | 
						
							| 5 |  | atantan | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( ℜ ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( arctan ‘ ( tan ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  𝐵  ∈  ℂ  ∧  ( ℜ ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( arctan ‘ ( tan ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 7 |  | fveqeq2 | ⊢ ( ( tan ‘ 𝐵 )  =  𝐴  →  ( ( arctan ‘ ( tan ‘ 𝐵 ) )  =  𝐵  ↔  ( arctan ‘ 𝐴 )  =  𝐵 ) ) | 
						
							| 8 | 6 7 | syl5ibcom | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  𝐵  ∈  ℂ  ∧  ( ℜ ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( ( tan ‘ 𝐵 )  =  𝐴  →  ( arctan ‘ 𝐴 )  =  𝐵 ) ) | 
						
							| 9 | 4 8 | impbid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  𝐵  ∈  ℂ  ∧  ( ℜ ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( ( arctan ‘ 𝐴 )  =  𝐵  ↔  ( tan ‘ 𝐵 )  =  𝐴 ) ) |