Metamath Proof Explorer


Theorem atantanb

Description: Relationship between tangent and arctangent. (Contributed by Mario Carneiro, 5-Apr-2015)

Ref Expression
Assertion atantanb ( ( 𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( arctan ‘ 𝐴 ) = 𝐵 ↔ ( tan ‘ 𝐵 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 tanatan ( 𝐴 ∈ dom arctan → ( tan ‘ ( arctan ‘ 𝐴 ) ) = 𝐴 )
2 1 3ad2ant1 ( ( 𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ ( arctan ‘ 𝐴 ) ) = 𝐴 )
3 fveqeq2 ( ( arctan ‘ 𝐴 ) = 𝐵 → ( ( tan ‘ ( arctan ‘ 𝐴 ) ) = 𝐴 ↔ ( tan ‘ 𝐵 ) = 𝐴 ) )
4 2 3 syl5ibcom ( ( 𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( arctan ‘ 𝐴 ) = 𝐵 → ( tan ‘ 𝐵 ) = 𝐴 ) )
5 atantan ( ( 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arctan ‘ ( tan ‘ 𝐵 ) ) = 𝐵 )
6 5 3adant1 ( ( 𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arctan ‘ ( tan ‘ 𝐵 ) ) = 𝐵 )
7 fveqeq2 ( ( tan ‘ 𝐵 ) = 𝐴 → ( ( arctan ‘ ( tan ‘ 𝐵 ) ) = 𝐵 ↔ ( arctan ‘ 𝐴 ) = 𝐵 ) )
8 6 7 syl5ibcom ( ( 𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( tan ‘ 𝐵 ) = 𝐴 → ( arctan ‘ 𝐴 ) = 𝐵 ) )
9 4 8 impbid ( ( 𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( arctan ‘ 𝐴 ) = 𝐵 ↔ ( tan ‘ 𝐵 ) = 𝐴 ) )