Metamath Proof Explorer


Theorem atbtwnexOLDN

Description: There exists a 3rd atom r on a line P .\/ Q intersecting element X at P , such that r is different from Q and not in X . (Contributed by NM, 30-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atbtwn.b B=BaseK
atbtwn.l ˙=K
atbtwn.j ˙=joinK
atbtwn.a A=AtomsK
Assertion atbtwnexOLDN KHLPAQAXBP˙X¬Q˙XrArQ¬r˙Xr˙P˙Q

Proof

Step Hyp Ref Expression
1 atbtwn.b B=BaseK
2 atbtwn.l ˙=K
3 atbtwn.j ˙=joinK
4 atbtwn.a A=AtomsK
5 simpr2 KHLPAQAXBP˙X¬Q˙XP˙X
6 simpr3 KHLPAQAXBP˙X¬Q˙X¬Q˙X
7 nbrne2 P˙X¬Q˙XPQ
8 5 6 7 syl2anc KHLPAQAXBP˙X¬Q˙XPQ
9 2 3 4 hlsupr KHLPAQAPQrArPrQr˙P˙Q
10 8 9 syldan KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙Q
11 simp32 KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QrQ
12 simp31 KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QrP
13 simp1l KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QKHLPAQA
14 simp2 KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QrA
15 simp1r1 KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QXB
16 simp1r2 KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QP˙X
17 simp1r3 KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙Q¬Q˙X
18 simp33 KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙Qr˙P˙Q
19 1 2 3 4 atbtwn KHLPAQArAXBP˙X¬Q˙Xr˙P˙QrP¬r˙X
20 13 14 15 16 17 18 19 syl123anc KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QrP¬r˙X
21 12 20 mpbid KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙Q¬r˙X
22 11 21 18 3jca KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QrQ¬r˙Xr˙P˙Q
23 22 3exp KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QrQ¬r˙Xr˙P˙Q
24 23 reximdvai KHLPAQAXBP˙X¬Q˙XrArPrQr˙P˙QrArQ¬r˙Xr˙P˙Q
25 10 24 mpd KHLPAQAXBP˙X¬Q˙XrArQ¬r˙Xr˙P˙Q