Metamath Proof Explorer


Theorem atcvrlln2

Description: An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012)

Ref Expression
Hypotheses atcvrlln2.l ˙=K
atcvrlln2.c C=K
atcvrlln2.a A=AtomsK
atcvrlln2.n N=LLinesK
Assertion atcvrlln2 KHLPAXNP˙XPCX

Proof

Step Hyp Ref Expression
1 atcvrlln2.l ˙=K
2 atcvrlln2.c C=K
3 atcvrlln2.a A=AtomsK
4 atcvrlln2.n N=LLinesK
5 simpl3 KHLPAXNP˙XXN
6 simpl1 KHLPAXNP˙XKHL
7 eqid BaseK=BaseK
8 7 4 llnbase XNXBaseK
9 5 8 syl KHLPAXNP˙XXBaseK
10 eqid joinK=joinK
11 7 10 3 4 islln3 KHLXBaseKXNqArAqrX=qjoinKr
12 6 9 11 syl2anc KHLPAXNP˙XXNqArAqrX=qjoinKr
13 5 12 mpbid KHLPAXNP˙XqArAqrX=qjoinKr
14 simp1l1 KHLPAXNP˙XqArAqrX=qjoinKrKHL
15 simp1l2 KHLPAXNP˙XqArAqrX=qjoinKrPA
16 simp2l KHLPAXNP˙XqArAqrX=qjoinKrqA
17 simp2r KHLPAXNP˙XqArAqrX=qjoinKrrA
18 simp3l KHLPAXNP˙XqArAqrX=qjoinKrqr
19 simp1r KHLPAXNP˙XqArAqrX=qjoinKrP˙X
20 simp3r KHLPAXNP˙XqArAqrX=qjoinKrX=qjoinKr
21 19 20 breqtrd KHLPAXNP˙XqArAqrX=qjoinKrP˙qjoinKr
22 1 10 2 3 atcvrj2 KHLPAqArAqrP˙qjoinKrPCqjoinKr
23 14 15 16 17 18 21 22 syl132anc KHLPAXNP˙XqArAqrX=qjoinKrPCqjoinKr
24 23 20 breqtrrd KHLPAXNP˙XqArAqrX=qjoinKrPCX
25 24 3exp KHLPAXNP˙XqArAqrX=qjoinKrPCX
26 25 rexlimdvv KHLPAXNP˙XqArAqrX=qjoinKrPCX
27 13 26 mpd KHLPAXNP˙XPCX