Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
atex
Next ⟩
intnatN
Metamath Proof Explorer
Ascii
Unicode
Theorem
atex
Description:
At least one atom exists.
(Contributed by
NM
, 15-Jul-2012)
Ref
Expression
Hypothesis
atex.1
⊢
A
=
Atoms
⁡
K
Assertion
atex
⊢
K
∈
HL
→
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
atex.1
⊢
A
=
Atoms
⁡
K
2
1
hl2at
⊢
K
∈
HL
→
∃
p
∈
A
∃
q
∈
A
p
≠
q
3
df-rex
⊢
∃
p
∈
A
∃
q
∈
A
p
≠
q
↔
∃
p
p
∈
A
∧
∃
q
∈
A
p
≠
q
4
exsimpl
⊢
∃
p
p
∈
A
∧
∃
q
∈
A
p
≠
q
→
∃
p
p
∈
A
5
3
4
sylbi
⊢
∃
p
∈
A
∃
q
∈
A
p
≠
q
→
∃
p
p
∈
A
6
2
5
syl
⊢
K
∈
HL
→
∃
p
p
∈
A
7
n0
⊢
A
≠
∅
↔
∃
p
p
∈
A
8
6
7
sylibr
⊢
K
∈
HL
→
A
≠
∅