Metamath Proof Explorer


Theorem atnlej2

Description: If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses atnlej.l ˙=K
atnlej.j ˙=joinK
atnlej.a A=AtomsK
Assertion atnlej2 KHLPAQARA¬P˙Q˙RPR

Proof

Step Hyp Ref Expression
1 atnlej.l ˙=K
2 atnlej.j ˙=joinK
3 atnlej.a A=AtomsK
4 hllat KHLKLat
5 4 3ad2ant1 KHLPAQARA¬P˙Q˙RKLat
6 simp21 KHLPAQARA¬P˙Q˙RPA
7 eqid BaseK=BaseK
8 7 3 atbase PAPBaseK
9 6 8 syl KHLPAQARA¬P˙Q˙RPBaseK
10 simp22 KHLPAQARA¬P˙Q˙RQA
11 7 3 atbase QAQBaseK
12 10 11 syl KHLPAQARA¬P˙Q˙RQBaseK
13 simp23 KHLPAQARA¬P˙Q˙RRA
14 7 3 atbase RARBaseK
15 13 14 syl KHLPAQARA¬P˙Q˙RRBaseK
16 simp3 KHLPAQARA¬P˙Q˙R¬P˙Q˙R
17 7 1 2 latnlej1r KLatPBaseKQBaseKRBaseK¬P˙Q˙RPR
18 5 9 12 15 16 17 syl131anc KHLPAQARA¬P˙Q˙RPR