Metamath Proof Explorer


Axiom ax-cnre

Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of Gleason p. 130. Axiom 17 of 22 for real and complex numbers, justified by Theorem axcnre . For naming consistency, use cnre for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999)

Ref Expression
Assertion ax-cnre AxyA=x+iy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cc class
2 0 1 wcel wffA
3 vx setvarx
4 cr class
5 vy setvary
6 3 cv setvarx
7 caddc class+
8 ci classi
9 cmul class×
10 5 cv setvary
11 8 10 9 co classiy
12 6 11 7 co classx+iy
13 0 12 wceq wffA=x+iy
14 13 5 4 wrex wffyA=x+iy
15 14 3 4 wrex wffxyA=x+iy
16 2 15 wi wffAxyA=x+iy