Metamath Proof Explorer


Axiom ax-groth

Description: The Tarski-Grothendieck Axiom. For every set x there is an inaccessible cardinal y such that y is not in x . The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". This version of the axiom is used by the Mizar project ( http://www.mizar.org/JFM/Axiomatics/tarski.html ). Unlike the ZFC axioms, this axiom is very long when expressed in terms of primitive symbols (see grothprim ). An open problem is finding a shorter equivalent. (Contributed by NM, 18-Mar-2007)

Ref Expression
Assertion ax-groth yxyzywwzwywyvvzvwzzyzyzy

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy setvary
1 vx setvarx
2 1 cv setvarx
3 0 cv setvary
4 2 3 wcel wffxy
5 vz setvarz
6 vw setvarw
7 6 cv setvarw
8 5 cv setvarz
9 7 8 wss wffwz
10 7 3 wcel wffwy
11 9 10 wi wffwzwy
12 11 6 wal wffwwzwy
13 vv setvarv
14 13 cv setvarv
15 14 8 wss wffvz
16 14 7 wcel wffvw
17 15 16 wi wffvzvw
18 17 13 wal wffvvzvw
19 18 6 3 wrex wffwyvvzvw
20 12 19 wa wffwwzwywyvvzvw
21 20 5 3 wral wffzywwzwywyvvzvw
22 8 3 wss wffzy
23 cen class
24 8 3 23 wbr wffzy
25 8 3 wcel wffzy
26 24 25 wo wffzyzy
27 22 26 wi wffzyzyzy
28 27 5 wal wffzzyzyzy
29 4 21 28 w3a wffxyzywwzwywyvvzvwzzyzyzy
30 29 0 wex wffyxyzywwzwywyvvzvwzzyzyzy