Metamath Proof Explorer


Axiom ax-hvmul0

Description: Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid and hvsubval ). (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvmul0 A0A=0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 chba class
2 0 1 wcel wffA
3 cc0 class0
4 csm class
5 3 0 4 co class0A
6 c0v class0
7 5 6 wceq wff0A=0
8 2 7 wi wffA0A=0