Metamath Proof Explorer


Theorem ax12indi

Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Implication case. (Contributed by NM, 21-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ax12indn.1 ¬xx=yx=yφxx=yφ
ax12indi.2 ¬xx=yx=yψxx=yψ
Assertion ax12indi ¬xx=yx=yφψxx=yφψ

Proof

Step Hyp Ref Expression
1 ax12indn.1 ¬xx=yx=yφxx=yφ
2 ax12indi.2 ¬xx=yx=yψxx=yψ
3 1 ax12indn ¬xx=yx=y¬φxx=y¬φ
4 3 imp ¬xx=yx=y¬φxx=y¬φ
5 pm2.21 ¬φφψ
6 5 imim2i x=y¬φx=yφψ
7 6 alimi xx=y¬φxx=yφψ
8 4 7 syl6 ¬xx=yx=y¬φxx=yφψ
9 2 imp ¬xx=yx=yψxx=yψ
10 ax-1 ψφψ
11 10 imim2i x=yψx=yφψ
12 11 alimi xx=yψxx=yφψ
13 9 12 syl6 ¬xx=yx=yψxx=yφψ
14 8 13 jad ¬xx=yx=yφψxx=yφψ
15 14 ex ¬xx=yx=yφψxx=yφψ