Metamath Proof Explorer


Theorem ax12v2-o

Description: Rederivation of ax-c15 from ax12v (without using ax-c15 or the full ax-12 ). Thus, the hypothesis ( ax12v ) provides an alternate axiom that can be used in place of ax-c15 . See also axc15 . (Contributed by NM, 2-Feb-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12v2-o.1 x=zφxx=zφ
Assertion ax12v2-o ¬xx=yx=yφxx=yφ

Proof

Step Hyp Ref Expression
1 ax12v2-o.1 x=zφxx=zφ
2 ax6ev zz=y
3 equequ2 z=yx=zx=y
4 3 adantl ¬xx=yz=yx=zx=y
5 dveeq2-o ¬xx=yz=yxz=y
6 5 imp ¬xx=yz=yxz=y
7 nfa1-o xxz=y
8 3 imbi1d z=yx=zφx=yφ
9 8 sps-o xz=yx=zφx=yφ
10 7 9 albid xz=yxx=zφxx=yφ
11 6 10 syl ¬xx=yz=yxx=zφxx=yφ
12 11 imbi2d ¬xx=yz=yφxx=zφφxx=yφ
13 4 12 imbi12d ¬xx=yz=yx=zφxx=zφx=yφxx=yφ
14 1 13 mpbii ¬xx=yz=yx=yφxx=yφ
15 14 ex ¬xx=yz=yx=yφxx=yφ
16 15 exlimdv ¬xx=yzz=yx=yφxx=yφ
17 2 16 mpi ¬xx=yx=yφxx=yφ