Description: If at least two sets exist ( dtru ), then the same is true expressed in an alternate form similar to the form of ax6e . ax6e2nd is derived from ax6e2ndVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax6e2nd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |
|
2 | ax6e | |
|
3 | 1 2 | pm3.2i | |
4 | 19.42v | |
|
5 | 4 | biimpri | |
6 | 3 5 | ax-mp | |
7 | isset | |
|
8 | 7 | anbi1i | |
9 | 8 | exbii | |
10 | 6 9 | mpbi | |
11 | id | |
|
12 | hbnae | |
|
13 | hbn1 | |
|
14 | ax-5 | |
|
15 | ax-5 | |
|
16 | id | |
|
17 | equequ1 | |
|
18 | 16 17 | syl | |
19 | 18 | idiALT | |
20 | 14 15 19 | dvelimh | |
21 | 11 20 | syl | |
22 | 21 | idiALT | |
23 | 22 | alimi | |
24 | 13 23 | syl | |
25 | 11 24 | syl | |
26 | 19.41rg | |
|
27 | 25 26 | syl | |
28 | 27 | idiALT | |
29 | 28 | alimi | |
30 | 12 29 | syl | |
31 | 11 30 | syl | |
32 | exim | |
|
33 | 31 32 | syl | |
34 | pm2.27 | |
|
35 | 10 33 34 | mpsyl | |
36 | excomim | |
|
37 | 35 36 | syl | |
38 | 37 | idiALT | |