Metamath Proof Explorer


Theorem ax6e2nd

Description: If at least two sets exist ( dtru ), then the same is true expressed in an alternate form similar to the form of ax6e . ax6e2nd is derived from ax6e2ndVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax6e2nd ¬xx=yxyx=uy=v

Proof

Step Hyp Ref Expression
1 vex uV
2 ax6e yy=v
3 1 2 pm3.2i uVyy=v
4 19.42v yuVy=vuVyy=v
5 4 biimpri uVyy=vyuVy=v
6 3 5 ax-mp yuVy=v
7 isset uVxx=u
8 7 anbi1i uVy=vxx=uy=v
9 8 exbii yuVy=vyxx=uy=v
10 6 9 mpbi yxx=uy=v
11 id ¬xx=y¬xx=y
12 hbnae ¬xx=yy¬xx=y
13 hbn1 ¬xx=yx¬xx=y
14 ax-5 z=vxz=v
15 ax-5 y=vzy=v
16 id z=yz=y
17 equequ1 z=yz=vy=v
18 16 17 syl z=yz=vy=v
19 18 idiALT z=yz=vy=v
20 14 15 19 dvelimh ¬xx=yy=vxy=v
21 11 20 syl ¬xx=yy=vxy=v
22 21 idiALT ¬xx=yy=vxy=v
23 22 alimi x¬xx=yxy=vxy=v
24 13 23 syl ¬xx=yxy=vxy=v
25 11 24 syl ¬xx=yxy=vxy=v
26 19.41rg xy=vxy=vxx=uy=vxx=uy=v
27 25 26 syl ¬xx=yxx=uy=vxx=uy=v
28 27 idiALT ¬xx=yxx=uy=vxx=uy=v
29 28 alimi y¬xx=yyxx=uy=vxx=uy=v
30 12 29 syl ¬xx=yyxx=uy=vxx=uy=v
31 11 30 syl ¬xx=yyxx=uy=vxx=uy=v
32 exim yxx=uy=vxx=uy=vyxx=uy=vyxx=uy=v
33 31 32 syl ¬xx=yyxx=uy=vyxx=uy=v
34 pm2.27 yxx=uy=vyxx=uy=vyxx=uy=vyxx=uy=v
35 10 33 34 mpsyl ¬xx=yyxx=uy=v
36 excomim yxx=uy=vxyx=uy=v
37 35 36 syl ¬xx=yxyx=uy=v
38 37 idiALT ¬xx=yxyx=uy=v