Metamath Proof Explorer


Theorem ax8dfeq

Description: A version of ax-8 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010)

Ref Expression
Assertion ax8dfeq z z x z y w x w y

Proof

Step Hyp Ref Expression
1 ax6e z z = w
2 ax8 w = z w x z x
3 2 equcoms z = w w x z x
4 ax8 z = w z y w y
5 3 4 imim12d z = w z x z y w x w y
6 1 5 eximii z z x z y w x w y