Metamath Proof Explorer


Theorem ax8dfeq

Description: A version of ax-8 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010)

Ref Expression
Assertion ax8dfeq zzxzywxwy

Proof

Step Hyp Ref Expression
1 ax6e zz=w
2 ax8 w=zwxzx
3 2 equcoms z=wwxzx
4 ax8 z=wzywy
5 3 4 imim12d z=wzxzywxwy
6 1 5 eximii zzxzywxwy