Metamath Proof Explorer


Theorem ax8dfeq

Description: A version of ax-8 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010)

Ref Expression
Assertion ax8dfeq
|- E. z ( ( z e. x -> z e. y ) -> ( w e. x -> w e. y ) )

Proof

Step Hyp Ref Expression
1 ax6e
 |-  E. z z = w
2 ax8
 |-  ( w = z -> ( w e. x -> z e. x ) )
3 2 equcoms
 |-  ( z = w -> ( w e. x -> z e. x ) )
4 ax8
 |-  ( z = w -> ( z e. y -> w e. y ) )
5 3 4 imim12d
 |-  ( z = w -> ( ( z e. x -> z e. y ) -> ( w e. x -> w e. y ) ) )
6 1 5 eximii
 |-  E. z ( ( z e. x -> z e. y ) -> ( w e. x -> w e. y ) )