Metamath Proof Explorer


Theorem axacndlem1

Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axacndlem1 xx=yxyzxyzzwwywyzzwywwxy=w

Proof

Step Hyp Ref Expression
1 nfae yxx=y
2 nfae zxx=y
3 simpl yzzwyz
4 3 alimi xyzzwxyz
5 nd1 xx=y¬xyz
6 5 pm2.21d xx=yxyzwywyzzwywwxy=w
7 4 6 syl5 xx=yxyzzwwywyzzwywwxy=w
8 2 7 alrimi xx=yzxyzzwwywyzzwywwxy=w
9 1 8 alrimi xx=yyzxyzzwwywyzzwywwxy=w
10 9 19.8ad xx=yxyzxyzzwwywyzzwywwxy=w