Metamath Proof Explorer


Theorem nd1

Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 1-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion nd1 x x = y ¬ x y z

Proof

Step Hyp Ref Expression
1 elirrv ¬ z z
2 stdpc4 y y z z y y z
3 1 nfnth y z z
4 elequ1 y = z y z z z
5 3 4 sbie z y y z z z
6 2 5 sylib y y z z z
7 1 6 mto ¬ y y z
8 axc11 x x = y x y z y y z
9 7 8 mtoi x x = y ¬ x y z