Metamath Proof Explorer


Theorem nd1

Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 1-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion nd1 xx=y¬xyz

Proof

Step Hyp Ref Expression
1 elirrv ¬zz
2 stdpc4 yyzzyyz
3 1 nfnth yzz
4 elequ1 y=zyzzz
5 3 4 sbie zyyzzz
6 2 5 sylib yyzzz
7 1 6 mto ¬yyz
8 axc11 xx=yxyzyyz
9 7 8 mtoi xx=y¬xyz