Metamath Proof Explorer


Theorem nd2

Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 1-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion nd2 xx=y¬xzy

Proof

Step Hyp Ref Expression
1 elirrv ¬zz
2 stdpc4 yzyzyzy
3 1 nfnth yzz
4 elequ2 y=zzyzz
5 3 4 sbie zyzyzz
6 2 5 sylib yzyzz
7 1 6 mto ¬yzy
8 axc11 xx=yxzyyzy
9 7 8 mtoi xx=y¬xzy