Metamath Proof Explorer


Theorem axacndlem3

Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axacndlem3 yy=zxyzxyzzwwywyzzwywwxy=w

Proof

Step Hyp Ref Expression
1 nfae zyy=z
2 simpl yzzwyz
3 2 alimi xyzzwxyz
4 nd3 yy=z¬xyz
5 4 pm2.21d yy=zxyzwywyzzwywwxy=w
6 3 5 syl5 yy=zxyzzwwywyzzwywwxy=w
7 1 6 alrimi yy=zzxyzzwwywyzzwywwxy=w
8 7 axc4i yy=zyzxyzzwwywyzzwywwxy=w
9 8 19.8ad yy=zxyzxyzzwwywyzzwywwxy=w