| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  𝑦  ∈  𝑧 ) | 
						
							| 3 | 2 | alimi | ⊢ ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 4 |  | nd3 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ¬  ∀ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 5 | 4 | pm2.21d | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 𝑦  ∈  𝑧  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 6 | 3 5 | syl5 | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 7 | 1 6 | alrimi | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 8 | 7 | axc4i | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 9 | 8 | 19.8ad | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) |