| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zfac | ⊢ ∃ 𝑣 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) ) | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 4 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑤 | 
						
							| 5 | 2 3 4 | nf3an | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 ) | 
						
							| 6 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 7 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 8 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑤 | 
						
							| 9 | 6 7 8 | nf3an | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 ) | 
						
							| 10 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 11 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 12 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑤 | 
						
							| 13 | 10 11 12 | nf3an | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 ) | 
						
							| 14 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 15 | 14 | 3ad2ant2 | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 16 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 18 | 15 17 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑦  ∈  𝑧 ) | 
						
							| 19 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑤  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 20 | 19 | 3ad2ant3 | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 21 | 17 20 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑧  ∈  𝑤 ) | 
						
							| 22 | 18 21 | nfand | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) | 
						
							| 23 |  | nfnae | ⊢ Ⅎ 𝑤 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 24 |  | nfnae | ⊢ Ⅎ 𝑤 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 25 |  | nfnae | ⊢ Ⅎ 𝑤 ¬  ∀ 𝑥 𝑥  =  𝑤 | 
						
							| 26 | 23 24 25 | nf3an | ⊢ Ⅎ 𝑤 ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 ) | 
						
							| 27 | 15 20 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑦  ∈  𝑤 ) | 
						
							| 28 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑣 ) | 
						
							| 29 | 20 28 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑤  ∈  𝑣 ) | 
						
							| 30 | 27 29 | nfand | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) ) | 
						
							| 31 | 22 30 | nfand | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) ) ) | 
						
							| 32 | 26 31 | nfexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) ) ) | 
						
							| 33 | 15 20 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 𝑦  =  𝑤 ) | 
						
							| 34 | 32 33 | nfbid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) ) | 
						
							| 35 | 9 34 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) ) | 
						
							| 36 | 26 35 | nfexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) ) | 
						
							| 37 | 22 36 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 38 | 13 37 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 39 | 9 38 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 40 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑦 𝑣 ) | 
						
							| 41 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 43 | 40 42 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑦 𝑣  =  𝑥 ) | 
						
							| 44 | 9 43 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 ) | 
						
							| 45 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑧 𝑣 ) | 
						
							| 46 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 48 | 45 47 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑧 𝑣  =  𝑥 ) | 
						
							| 49 | 13 48 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 ) | 
						
							| 50 | 22 | nf5rd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) ) | 
						
							| 52 |  | sp | ⊢ ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) | 
						
							| 53 | 51 52 | impbid1 | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ↔  ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 ) ) ) | 
						
							| 54 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑤 𝑣 ) | 
						
							| 55 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑤  →  Ⅎ 𝑤 𝑥 ) | 
						
							| 56 | 55 | 3ad2ant3 | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑤 𝑥 ) | 
						
							| 57 | 54 56 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  Ⅎ 𝑤 𝑣  =  𝑥 ) | 
						
							| 58 | 26 57 | nfan1 | ⊢ Ⅎ 𝑤 ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 ) | 
						
							| 59 |  | simpr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  𝑣  =  𝑥 ) | 
						
							| 60 | 59 | eleq2d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( 𝑤  ∈  𝑣  ↔  𝑤  ∈  𝑥 ) ) | 
						
							| 61 | 60 | anbi2d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 )  ↔  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) ) ) | 
						
							| 62 | 61 | anbi2d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) ) ) ) | 
						
							| 63 | 58 62 | exbid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) ) ) ) | 
						
							| 64 | 63 | bibi1d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 )  ↔  ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 65 | 44 64 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 )  ↔  ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 66 | 58 65 | exbid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 )  ↔  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 67 | 53 66 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) ) | 
						
							| 68 | 49 67 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) )  ↔  ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) ) | 
						
							| 69 | 44 68 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  ∧  𝑣  =  𝑥 )  →  ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) )  ↔  ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  ( 𝑣  =  𝑥  →  ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) )  ↔  ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 71 | 5 39 70 | cbvexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  ( ∃ 𝑣 ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑣 ) )  ↔  𝑦  =  𝑤 ) )  ↔  ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) ) | 
						
							| 72 | 1 71 | mpbii | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑤 )  →  ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 73 | 72 | 3exp | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ¬  ∀ 𝑥 𝑥  =  𝑤  →  ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 74 |  | axacndlem2 | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 75 |  | axacndlem1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 76 |  | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥  =  𝑤 | 
						
							| 77 |  | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥  =  𝑤 | 
						
							| 78 |  | simpr | ⊢ ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  𝑧  ∈  𝑤 ) | 
						
							| 79 | 78 | alimi | ⊢ ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∀ 𝑥 𝑧  ∈  𝑤 ) | 
						
							| 80 |  | nd2 | ⊢ ( ∀ 𝑥 𝑥  =  𝑤  →  ¬  ∀ 𝑥 𝑧  ∈  𝑤 ) | 
						
							| 81 | 80 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑤  →  ( ∀ 𝑥 𝑧  ∈  𝑤  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 82 | 79 81 | syl5 | ⊢ ( ∀ 𝑥 𝑥  =  𝑤  →  ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 83 | 77 82 | alrimi | ⊢ ( ∀ 𝑥 𝑥  =  𝑤  →  ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 84 | 76 83 | alrimi | ⊢ ( ∀ 𝑥 𝑥  =  𝑤  →  ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 85 | 84 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥  =  𝑤  →  ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) ) | 
						
							| 86 | 73 74 75 85 | pm2.61iii | ⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  →  ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝑤 )  ∧  ( 𝑦  ∈  𝑤  ∧  𝑤  ∈  𝑥 ) )  ↔  𝑦  =  𝑤 ) ) |