Metamath Proof Explorer


Theorem axbnd

Description: Axiom of Bundling (intuitionistic logic axiom ax-bnd). In classical logic, this and axi12 are fairly straightforward consequences of axc9 . But in intuitionistic logic, it is not easy to add the extra A. x to axi12 and so we treat the two as separate axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Jim Kingdon, 22-Mar-2018) (Proof shortened by Wolf Lammen, 24-Apr-2023) (New usage is discouraged.)

Ref Expression
Assertion axbnd zz=xzz=yxzx=yzx=y

Proof

Step Hyp Ref Expression
1 nfae xzz=x
2 nfae xzz=y
3 1 2 nfor xzz=xzz=y
4 3 19.32 xzz=xzz=yzx=yzx=yzz=xzz=yxzx=yzx=y
5 orass zz=xzz=yxzx=yzx=yzz=xzz=yxzx=yzx=y
6 4 5 bitri xzz=xzz=yzx=yzx=yzz=xzz=yxzx=yzx=y
7 axi12 zz=xzz=yzx=yzx=y
8 orass zz=xzz=yzx=yzx=yzz=xzz=yzx=yzx=y
9 7 8 mpbir zz=xzz=yzx=yzx=y
10 6 9 mpgbi zz=xzz=yxzx=yzx=y