Metamath Proof Explorer


Theorem axc16ALT

Description: Alternate proof of axc16 , shorter but requiring ax-10 , ax-11 , ax-13 and using df-nf and df-sb . (Contributed by NM, 17-May-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc16ALT xx=yφxφ

Proof

Step Hyp Ref Expression
1 sbequ12 x=zφzxφ
2 ax-5 φzφ
3 2 hbsb3 zxφxzxφ
4 1 3 axc16i xx=yφxφ