Metamath Proof Explorer


Theorem axc4i

Description: Inference version of axc4 . (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypothesis axc4i.1 xφψ
Assertion axc4i xφxψ

Proof

Step Hyp Ref Expression
1 axc4i.1 xφψ
2 nfa1 xxφ
3 2 1 alrimi xφxψ