Metamath Proof Explorer


Theorem axc5c4c711

Description: Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen as the inference rule. This proof extends the idea of axc5c711 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011)

Ref Expression
Assertion axc5c4c711 xy¬xyyφψφyyφψyφyψ

Proof

Step Hyp Ref Expression
1 axc4 yyφψyφyψ
2 hbn1 ¬yyφψy¬yyφψ
3 axc7 ¬x¬xyyφψyyφψ
4 3 con1i ¬yyφψx¬xyyφψ
5 2 4 alrimih ¬yyφψyx¬xyyφψ
6 ax-11 yx¬xyyφψxy¬xyyφψ
7 5 6 syl ¬yyφψxy¬xyyφψ
8 1 7 nsyl4 ¬xy¬xyyφψyφyψ
9 pm2.21 ¬φφyψ
10 9 spsd ¬φyφyψ
11 10 1 ja φyyφψyφyψ
12 8 11 ja xy¬xyyφψφyyφψyφyψ