Metamath Proof Explorer


Theorem axc5c711to11

Description: Rederivation of ax-11 from axc5c711 . Note that ax-c7 and ax-11 are not used by the rederivation. The use of alimi (which uses ax-c5 ) is allowed since we have already proved axc5c711toc5 . (Contributed by NM, 19-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c711to11 xyφyxφ

Proof

Step Hyp Ref Expression
1 axc5c711toc7 ¬y¬y¬xyφ¬xyφ
2 1 con4i xyφy¬y¬xyφ
3 pm2.21 ¬xy¬xyφxy¬xyφxφ
4 axc5c711 xy¬xyφxφφ
5 3 4 syl ¬xy¬xyφφ
6 5 alimi x¬xy¬xyφxφ
7 axc5c711toc7 ¬x¬xy¬xyφy¬xyφ
8 6 7 nsyl4 ¬y¬xyφxφ
9 8 alimi y¬y¬xyφyxφ
10 2 9 syl xyφyxφ