Metamath Proof Explorer


Theorem axinf

Description: The first version of the Axiom of Infinity ax-inf proved from the second version ax-inf2 . Note that we didn't use ax-reg , unlike the other direction axinf2 . (Contributed by NM, 24-Apr-2009)

Ref Expression
Assertion axinf yxyzzywzwwy

Proof

Step Hyp Ref Expression
1 omex ωV
2 inf0 ωVyxyzzywzwwy
3 1 2 ax-mp yxyzzywzwwy