Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf and Regularity ax-reg .
This theorem should not be referenced in any proof. Instead, use ax-inf2 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | axinf2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 | |
|
2 | peano2 | |
|
3 | 2 | ax-gen | |
4 | zfinf | |
|
5 | 4 | inf2 | |
6 | 5 | inf3 | |
7 | eleq2 | |
|
8 | eleq2 | |
|
9 | eleq2 | |
|
10 | 8 9 | imbi12d | |
11 | 10 | albidv | |
12 | 7 11 | anbi12d | |
13 | 6 12 | spcev | |
14 | 1 3 13 | mp2an | |
15 | 0el | |
|
16 | df-rex | |
|
17 | 15 16 | bitri | |
18 | sucel | |
|
19 | df-rex | |
|
20 | 18 19 | bitri | |
21 | 20 | imbi2i | |
22 | 21 | albii | |
23 | 17 22 | anbi12i | |
24 | 23 | exbii | |
25 | 14 24 | mpbi | |