Metamath Proof Explorer


Theorem axinf2

Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf and Regularity ax-reg .

This theorem should not be referenced in any proof. Instead, use ax-inf2 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996)

Ref Expression
Assertion axinf2 xyyxz¬zyyyxzzxwwzwyw=y

Proof

Step Hyp Ref Expression
1 peano1 ω
2 peano2 yωsucyω
3 2 ax-gen yyωsucyω
4 zfinf xyxyyxzyzzx
5 4 inf2 xxxx
6 5 inf3 ωV
7 eleq2 x=ωxω
8 eleq2 x=ωyxyω
9 eleq2 x=ωsucyxsucyω
10 8 9 imbi12d x=ωyxsucyxyωsucyω
11 10 albidv x=ωyyxsucyxyyωsucyω
12 7 11 anbi12d x=ωxyyxsucyxωyyωsucyω
13 6 12 spcev ωyyωsucyωxxyyxsucyx
14 1 3 13 mp2an xxyyxsucyx
15 0el xyxz¬zy
16 df-rex yxz¬zyyyxz¬zy
17 15 16 bitri xyyxz¬zy
18 sucel sucyxzxwwzwyw=y
19 df-rex zxwwzwyw=yzzxwwzwyw=y
20 18 19 bitri sucyxzzxwwzwyw=y
21 20 imbi2i yxsucyxyxzzxwwzwyw=y
22 21 albii yyxsucyxyyxzzxwwzwyw=y
23 17 22 anbi12i xyyxsucyxyyxz¬zyyyxzzxwwzwyw=y
24 23 exbii xxyyxsucyxxyyxz¬zyyyxzzxwwzwyw=y
25 14 24 mpbi xyyxz¬zyyyxzzxwwzwyw=y