Metamath Proof Explorer


Theorem inf0

Description: Existence of _om implies our axiom of infinity ax-inf . The proof shows that the especially contrived class " ` ran ( rec ( ( v e.V |-> suc v ) , x ) |`om ) " exists, is a subset of its union, and contains a given set x (and thus is nonempty). Thus, it provides an example demonstrating that a set y exists with the necessary properties demanded by ax-inf . (Contributed by NM, 15-Oct-1996) Revised to closed form. (Revised by BJ, 20-May-2024)

Ref Expression
Assertion inf0 ω V y x y z z y w z w w y

Proof

Step Hyp Ref Expression
1 fr0g x V rec v V suc v x ω = x
2 1 elv rec v V suc v x ω = x
3 frfnom rec v V suc v x ω Fn ω
4 peano1 ω
5 fnfvelrn rec v V suc v x ω Fn ω ω rec v V suc v x ω ran rec v V suc v x ω
6 3 4 5 mp2an rec v V suc v x ω ran rec v V suc v x ω
7 2 6 eqeltrri x ran rec v V suc v x ω
8 fvelrnb rec v V suc v x ω Fn ω z ran rec v V suc v x ω f ω rec v V suc v x ω f = z
9 3 8 ax-mp z ran rec v V suc v x ω f ω rec v V suc v x ω f = z
10 fvex rec v V suc v x ω f V
11 10 sucid rec v V suc v x ω f suc rec v V suc v x ω f
12 10 sucex suc rec v V suc v x ω f V
13 eqid rec v V suc v x ω = rec v V suc v x ω
14 suceq z = v suc z = suc v
15 suceq z = rec v V suc v x ω f suc z = suc rec v V suc v x ω f
16 13 14 15 frsucmpt2 f ω suc rec v V suc v x ω f V rec v V suc v x ω suc f = suc rec v V suc v x ω f
17 12 16 mpan2 f ω rec v V suc v x ω suc f = suc rec v V suc v x ω f
18 11 17 eleqtrrid f ω rec v V suc v x ω f rec v V suc v x ω suc f
19 eleq1 rec v V suc v x ω f = z rec v V suc v x ω f rec v V suc v x ω suc f z rec v V suc v x ω suc f
20 18 19 syl5ib rec v V suc v x ω f = z f ω z rec v V suc v x ω suc f
21 peano2b f ω suc f ω
22 fnfvelrn rec v V suc v x ω Fn ω suc f ω rec v V suc v x ω suc f ran rec v V suc v x ω
23 3 22 mpan suc f ω rec v V suc v x ω suc f ran rec v V suc v x ω
24 21 23 sylbi f ω rec v V suc v x ω suc f ran rec v V suc v x ω
25 20 24 jca2 rec v V suc v x ω f = z f ω z rec v V suc v x ω suc f rec v V suc v x ω suc f ran rec v V suc v x ω
26 fvex rec v V suc v x ω suc f V
27 eleq2 w = rec v V suc v x ω suc f z w z rec v V suc v x ω suc f
28 eleq1 w = rec v V suc v x ω suc f w ran rec v V suc v x ω rec v V suc v x ω suc f ran rec v V suc v x ω
29 27 28 anbi12d w = rec v V suc v x ω suc f z w w ran rec v V suc v x ω z rec v V suc v x ω suc f rec v V suc v x ω suc f ran rec v V suc v x ω
30 26 29 spcev z rec v V suc v x ω suc f rec v V suc v x ω suc f ran rec v V suc v x ω w z w w ran rec v V suc v x ω
31 25 30 syl6com f ω rec v V suc v x ω f = z w z w w ran rec v V suc v x ω
32 31 rexlimiv f ω rec v V suc v x ω f = z w z w w ran rec v V suc v x ω
33 9 32 sylbi z ran rec v V suc v x ω w z w w ran rec v V suc v x ω
34 33 ax-gen z z ran rec v V suc v x ω w z w w ran rec v V suc v x ω
35 fndm rec v V suc v x ω Fn ω dom rec v V suc v x ω = ω
36 3 35 ax-mp dom rec v V suc v x ω = ω
37 id ω V ω V
38 36 37 eqeltrid ω V dom rec v V suc v x ω V
39 fnfun rec v V suc v x ω Fn ω Fun rec v V suc v x ω
40 3 39 ax-mp Fun rec v V suc v x ω
41 funrnex dom rec v V suc v x ω V Fun rec v V suc v x ω ran rec v V suc v x ω V
42 38 40 41 mpisyl ω V ran rec v V suc v x ω V
43 eleq2 y = ran rec v V suc v x ω x y x ran rec v V suc v x ω
44 eleq2 y = ran rec v V suc v x ω z y z ran rec v V suc v x ω
45 eleq2 y = ran rec v V suc v x ω w y w ran rec v V suc v x ω
46 45 anbi2d y = ran rec v V suc v x ω z w w y z w w ran rec v V suc v x ω
47 46 exbidv y = ran rec v V suc v x ω w z w w y w z w w ran rec v V suc v x ω
48 44 47 imbi12d y = ran rec v V suc v x ω z y w z w w y z ran rec v V suc v x ω w z w w ran rec v V suc v x ω
49 48 albidv y = ran rec v V suc v x ω z z y w z w w y z z ran rec v V suc v x ω w z w w ran rec v V suc v x ω
50 43 49 anbi12d y = ran rec v V suc v x ω x y z z y w z w w y x ran rec v V suc v x ω z z ran rec v V suc v x ω w z w w ran rec v V suc v x ω
51 50 spcegv ran rec v V suc v x ω V x ran rec v V suc v x ω z z ran rec v V suc v x ω w z w w ran rec v V suc v x ω y x y z z y w z w w y
52 42 51 syl ω V x ran rec v V suc v x ω z z ran rec v V suc v x ω w z w w ran rec v V suc v x ω y x y z z y w z w w y
53 7 34 52 mp2ani ω V y x y z z y w z w w y