Description: Existence of _om implies our axiom of infinity ax-inf . The proof shows that the especially contrived class " ` ran ( rec ( ( v e.V |-> suc v ) , x ) |`om ) " exists, is a subset of its union, and contains a given set x (and thus is nonempty). Thus, it provides an example demonstrating that a set y exists with the necessary properties demanded by ax-inf . (Contributed by NM, 15-Oct-1996) Revised to closed form. (Revised by BJ, 20-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | inf0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr0g | |
|
2 | 1 | elv | |
3 | frfnom | |
|
4 | peano1 | |
|
5 | fnfvelrn | |
|
6 | 3 4 5 | mp2an | |
7 | 2 6 | eqeltrri | |
8 | fvelrnb | |
|
9 | 3 8 | ax-mp | |
10 | fvex | |
|
11 | 10 | sucid | |
12 | 10 | sucex | |
13 | eqid | |
|
14 | suceq | |
|
15 | suceq | |
|
16 | 13 14 15 | frsucmpt2 | |
17 | 12 16 | mpan2 | |
18 | 11 17 | eleqtrrid | |
19 | eleq1 | |
|
20 | 18 19 | imbitrid | |
21 | peano2b | |
|
22 | fnfvelrn | |
|
23 | 3 22 | mpan | |
24 | 21 23 | sylbi | |
25 | 20 24 | jca2 | |
26 | fvex | |
|
27 | eleq2 | |
|
28 | eleq1 | |
|
29 | 27 28 | anbi12d | |
30 | 26 29 | spcev | |
31 | 25 30 | syl6com | |
32 | 31 | rexlimiv | |
33 | 9 32 | sylbi | |
34 | 33 | ax-gen | |
35 | fndm | |
|
36 | 3 35 | ax-mp | |
37 | id | |
|
38 | 36 37 | eqeltrid | |
39 | fnfun | |
|
40 | 3 39 | ax-mp | |
41 | funrnex | |
|
42 | 38 40 41 | mpisyl | |
43 | eleq2 | |
|
44 | eleq2 | |
|
45 | eleq2 | |
|
46 | 45 | anbi2d | |
47 | 46 | exbidv | |
48 | 44 47 | imbi12d | |
49 | 48 | albidv | |
50 | 43 49 | anbi12d | |
51 | 50 | spcegv | |
52 | 42 51 | syl | |
53 | 7 34 52 | mp2ani | |