| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fr0g | 
							⊢ ( 𝑥  ∈  V  →  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ ∅ )  =  𝑥 )  | 
						
						
							| 2 | 
							
								1
							 | 
							elv | 
							⊢ ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ ∅ )  =  𝑥  | 
						
						
							| 3 | 
							
								
							 | 
							frfnom | 
							⊢ ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  Fn  ω  | 
						
						
							| 4 | 
							
								
							 | 
							peano1 | 
							⊢ ∅  ∈  ω  | 
						
						
							| 5 | 
							
								
							 | 
							fnfvelrn | 
							⊢ ( ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  Fn  ω  ∧  ∅  ∈  ω )  →  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ ∅ )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							mp2an | 
							⊢ ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ ∅ )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							eqeltrri | 
							⊢ 𝑥  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  | 
						
						
							| 8 | 
							
								
							 | 
							fvelrnb | 
							⊢ ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  Fn  ω  →  ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ↔  ∃ 𝑓  ∈  ω ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  =  𝑧 ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							ax-mp | 
							⊢ ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ↔  ∃ 𝑓  ∈  ω ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  =  𝑧 )  | 
						
						
							| 10 | 
							
								
							 | 
							fvex | 
							⊢ ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  ∈  V  | 
						
						
							| 11 | 
							
								10
							 | 
							sucid | 
							⊢ ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  ∈  suc  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  | 
						
						
							| 12 | 
							
								10
							 | 
							sucex | 
							⊢ suc  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  ∈  V  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  =  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  | 
						
						
							| 14 | 
							
								
							 | 
							suceq | 
							⊢ ( 𝑧  =  𝑣  →  suc  𝑧  =  suc  𝑣 )  | 
						
						
							| 15 | 
							
								
							 | 
							suceq | 
							⊢ ( 𝑧  =  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  →  suc  𝑧  =  suc  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 ) )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							frsucmpt2 | 
							⊢ ( ( 𝑓  ∈  ω  ∧  suc  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  ∈  V )  →  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  =  suc  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							mpan2 | 
							⊢ ( 𝑓  ∈  ω  →  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  =  suc  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 ) )  | 
						
						
							| 18 | 
							
								11 17
							 | 
							eleqtrrid | 
							⊢ ( 𝑓  ∈  ω  →  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  ∈  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eleq1 | 
							⊢ ( ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  =  𝑧  →  ( ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  ∈  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ↔  𝑧  ∈  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 ) ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							imbitrid | 
							⊢ ( ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  =  𝑧  →  ( 𝑓  ∈  ω  →  𝑧  ∈  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							peano2b | 
							⊢ ( 𝑓  ∈  ω  ↔  suc  𝑓  ∈  ω )  | 
						
						
							| 22 | 
							
								
							 | 
							fnfvelrn | 
							⊢ ( ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  Fn  ω  ∧  suc  𝑓  ∈  ω )  →  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) )  | 
						
						
							| 23 | 
							
								3 22
							 | 
							mpan | 
							⊢ ( suc  𝑓  ∈  ω  →  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							sylbi | 
							⊢ ( 𝑓  ∈  ω  →  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) )  | 
						
						
							| 25 | 
							
								20 24
							 | 
							jca2 | 
							⊢ ( ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  =  𝑧  →  ( 𝑓  ∈  ω  →  ( 𝑧  ∈  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∧  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fvex | 
							⊢ ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∈  V  | 
						
						
							| 27 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑤  =  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑤  =  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  →  ( 𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ↔  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							anbi12d | 
							⊢ ( 𝑤  =  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  →  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) )  ↔  ( 𝑧  ∈  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∧  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) )  | 
						
						
							| 30 | 
							
								26 29
							 | 
							spcev | 
							⊢ ( ( 𝑧  ∈  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∧  ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ suc  𝑓 )  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) )  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) )  | 
						
						
							| 31 | 
							
								25 30
							 | 
							syl6com | 
							⊢ ( 𝑓  ∈  ω  →  ( ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  =  𝑧  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							rexlimiv | 
							⊢ ( ∃ 𝑓  ∈  ω ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ‘ 𝑓 )  =  𝑧  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) )  | 
						
						
							| 33 | 
							
								9 32
							 | 
							sylbi | 
							⊢ ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ax-gen | 
							⊢ ∀ 𝑧 ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							fndm | 
							⊢ ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  Fn  ω  →  dom  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  =  ω )  | 
						
						
							| 36 | 
							
								3 35
							 | 
							ax-mp | 
							⊢ dom  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  =  ω  | 
						
						
							| 37 | 
							
								
							 | 
							id | 
							⊢ ( ω  ∈  𝑉  →  ω  ∈  𝑉 )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							eqeltrid | 
							⊢ ( ω  ∈  𝑉  →  dom  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ∈  𝑉 )  | 
						
						
							| 39 | 
							
								
							 | 
							fnfun | 
							⊢ ( ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  Fn  ω  →  Fun  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) )  | 
						
						
							| 40 | 
							
								3 39
							 | 
							ax-mp | 
							⊢ Fun  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  | 
						
						
							| 41 | 
							
								
							 | 
							funrnex | 
							⊢ ( dom  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ∈  𝑉  →  ( Fun  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ∈  V ) )  | 
						
						
							| 42 | 
							
								38 40 41
							 | 
							mpisyl | 
							⊢ ( ω  ∈  𝑉  →  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ∈  V )  | 
						
						
							| 43 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑦  =  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑦  =  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ( 𝑧  ∈  𝑦  ↔  𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑦  =  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ( 𝑤  ∈  𝑦  ↔  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							anbi2d | 
							⊢ ( 𝑦  =  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 )  ↔  ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							exbidv | 
							⊢ ( 𝑦  =  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ( ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 )  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) )  | 
						
						
							| 48 | 
							
								44 47
							 | 
							imbi12d | 
							⊢ ( 𝑦  =  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ( ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) )  ↔  ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							albidv | 
							⊢ ( 𝑦  =  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) )  ↔  ∀ 𝑧 ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) ) )  | 
						
						
							| 50 | 
							
								43 49
							 | 
							anbi12d | 
							⊢ ( 𝑦  =  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) )  ↔  ( 𝑥  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ∧  ∀ 𝑧 ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							spcegv | 
							⊢ ( ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ∈  V  →  ( ( 𝑥  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ∧  ∀ 𝑧 ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) )  →  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) ) )  | 
						
						
							| 52 | 
							
								42 51
							 | 
							syl | 
							⊢ ( ω  ∈  𝑉  →  ( ( 𝑥  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  ∧  ∀ 𝑧 ( 𝑧  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω )  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  ran  ( rec ( ( 𝑣  ∈  V  ↦  suc  𝑣 ) ,  𝑥 )  ↾  ω ) ) ) )  →  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) ) )  | 
						
						
							| 53 | 
							
								7 34 52
							 | 
							mp2ani | 
							⊢ ( ω  ∈  𝑉  →  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) )  |