Metamath Proof Explorer


Theorem axnulALT2

Description: Alternate proof of axnul , proved from propositional calculus, ax-gen , ax-4 , ax-5 , and ax-inf2 . (Contributed by BTernaryTau, 22-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axnulALT2 x y ¬ y x

Proof

Step Hyp Ref Expression
1 exsimpr x x z y ¬ y x x y ¬ y x
2 ax-inf2 z x x z y ¬ y x x x z y y z w w y w x w = x
3 simpl x x z y ¬ y x x x z y y z w w y w x w = x x x z y ¬ y x
4 2 3 eximii z x x z y ¬ y x
5 1 4 exlimiiv x y ¬ y x