Metamath Proof Explorer


Theorem r1omfv

Description: Value of the cumulative hierarchy of sets function at _om . (Contributed by BTernaryTau, 25-Jan-2026)

Ref Expression
Assertion r1omfv R1 ω = R1 ω

Proof

Step Hyp Ref Expression
1 omex ω V
2 limom Lim ω
3 r1lim ω V Lim ω R1 ω = x ω R1 x
4 1 2 3 mp2an R1 ω = x ω R1 x
5 r1funlim Fun R1 Lim dom R1
6 5 simpli Fun R1
7 funiunfv Fun R1 x ω R1 x = R1 ω
8 6 7 ax-mp x ω R1 x = R1 ω
9 4 8 eqtri R1 ω = R1 ω