Metamath Proof Explorer


Theorem r1omfv

Description: Value of the cumulative hierarchy of sets function at _om . (Contributed by BTernaryTau, 25-Jan-2026)

Ref Expression
Assertion r1omfv ( 𝑅1 ‘ ω ) = ( 𝑅1 “ ω )

Proof

Step Hyp Ref Expression
1 omex ω ∈ V
2 limom Lim ω
3 r1lim ( ( ω ∈ V ∧ Lim ω ) → ( 𝑅1 ‘ ω ) = 𝑥 ∈ ω ( 𝑅1𝑥 ) )
4 1 2 3 mp2an ( 𝑅1 ‘ ω ) = 𝑥 ∈ ω ( 𝑅1𝑥 )
5 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
6 5 simpli Fun 𝑅1
7 funiunfv ( Fun 𝑅1 𝑥 ∈ ω ( 𝑅1𝑥 ) = ( 𝑅1 “ ω ) )
8 6 7 ax-mp 𝑥 ∈ ω ( 𝑅1𝑥 ) = ( 𝑅1 “ ω )
9 4 8 eqtri ( 𝑅1 ‘ ω ) = ( 𝑅1 “ ω )