Description: Value of the cumulative hierarchy of sets function at _om . (Contributed by BTernaryTau, 25-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1omfv | ⊢ ( 𝑅1 ‘ ω ) = ∪ ( 𝑅1 “ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | ⊢ ω ∈ V | |
| 2 | limom | ⊢ Lim ω | |
| 3 | r1lim | ⊢ ( ( ω ∈ V ∧ Lim ω ) → ( 𝑅1 ‘ ω ) = ∪ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝑅1 ‘ ω ) = ∪ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) |
| 5 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 6 | 5 | simpli | ⊢ Fun 𝑅1 |
| 7 | funiunfv | ⊢ ( Fun 𝑅1 → ∪ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = ∪ ( 𝑅1 “ ω ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ∪ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = ∪ ( 𝑅1 “ ω ) |
| 9 | 4 8 | eqtri | ⊢ ( 𝑅1 ‘ ω ) = ∪ ( 𝑅1 “ ω ) |