Description: Value of the cumulative hierarchy of sets function at _om . (Contributed by BTernaryTau, 25-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1omfv | |- ( R1 ` _om ) = U. ( R1 " _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | |- _om e. _V |
|
| 2 | limom | |- Lim _om |
|
| 3 | r1lim | |- ( ( _om e. _V /\ Lim _om ) -> ( R1 ` _om ) = U_ x e. _om ( R1 ` x ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( R1 ` _om ) = U_ x e. _om ( R1 ` x ) |
| 5 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 6 | 5 | simpli | |- Fun R1 |
| 7 | funiunfv | |- ( Fun R1 -> U_ x e. _om ( R1 ` x ) = U. ( R1 " _om ) ) |
|
| 8 | 6 7 | ax-mp | |- U_ x e. _om ( R1 ` x ) = U. ( R1 " _om ) |
| 9 | 4 8 | eqtri | |- ( R1 ` _om ) = U. ( R1 " _om ) |