Metamath Proof Explorer


Theorem r1omfv

Description: Value of the cumulative hierarchy of sets function at _om . (Contributed by BTernaryTau, 25-Jan-2026)

Ref Expression
Assertion r1omfv
|- ( R1 ` _om ) = U. ( R1 " _om )

Proof

Step Hyp Ref Expression
1 omex
 |-  _om e. _V
2 limom
 |-  Lim _om
3 r1lim
 |-  ( ( _om e. _V /\ Lim _om ) -> ( R1 ` _om ) = U_ x e. _om ( R1 ` x ) )
4 1 2 3 mp2an
 |-  ( R1 ` _om ) = U_ x e. _om ( R1 ` x )
5 r1funlim
 |-  ( Fun R1 /\ Lim dom R1 )
6 5 simpli
 |-  Fun R1
7 funiunfv
 |-  ( Fun R1 -> U_ x e. _om ( R1 ` x ) = U. ( R1 " _om ) )
8 6 7 ax-mp
 |-  U_ x e. _om ( R1 ` x ) = U. ( R1 " _om )
9 4 8 eqtri
 |-  ( R1 ` _om ) = U. ( R1 " _om )