Metamath Proof Explorer


Theorem r1lim

Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1lim
|- ( ( A e. B /\ Lim A ) -> ( R1 ` A ) = U_ x e. A ( R1 ` x ) )

Proof

Step Hyp Ref Expression
1 limelon
 |-  ( ( A e. B /\ Lim A ) -> A e. On )
2 r1fnon
 |-  R1 Fn On
3 fndm
 |-  ( R1 Fn On -> dom R1 = On )
4 2 3 ax-mp
 |-  dom R1 = On
5 1 4 eleqtrrdi
 |-  ( ( A e. B /\ Lim A ) -> A e. dom R1 )
6 r1limg
 |-  ( ( A e. dom R1 /\ Lim A ) -> ( R1 ` A ) = U_ x e. A ( R1 ` x ) )
7 5 6 sylancom
 |-  ( ( A e. B /\ Lim A ) -> ( R1 ` A ) = U_ x e. A ( R1 ` x ) )