Metamath Proof Explorer


Theorem axregndlem1

Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axregndlem1 xx=zxyxxyzzx¬zy

Proof

Step Hyp Ref Expression
1 19.8a xyxxy
2 nfae xxx=z
3 nfae zxx=z
4 elirrv ¬xx
5 elequ1 x=zxxzx
6 4 5 mtbii x=z¬zx
7 6 sps xx=z¬zx
8 7 pm2.21d xx=zzx¬zy
9 3 8 alrimi xx=zzzx¬zy
10 9 anim2i xyxx=zxyzzx¬zy
11 10 expcom xx=zxyxyzzx¬zy
12 2 11 eximd xx=zxxyxxyzzx¬zy
13 1 12 syl5 xx=zxyxxyzzx¬zy