| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.8a |
⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 𝑥 ∈ 𝑦 ) |
| 2 |
|
nfae |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 |
| 3 |
|
nfae |
⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥 = 𝑧 |
| 4 |
|
elirrv |
⊢ ¬ 𝑥 ∈ 𝑥 |
| 5 |
|
elequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
| 6 |
4 5
|
mtbii |
⊢ ( 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥 ) |
| 7 |
6
|
sps |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ 𝑧 ∈ 𝑥 ) |
| 8 |
7
|
pm2.21d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
| 9 |
3 8
|
alrimi |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) |
| 10 |
9
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 11 |
10
|
expcom |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 12 |
2 11
|
eximd |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |
| 13 |
1 12
|
syl5 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) ) |