| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axreg2 | ⊢ ( 𝑤  ∈  𝑦  →  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 2 | 1 | ax-gen | ⊢ ∀ 𝑤 ( 𝑤  ∈  𝑦  →  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 4 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 6 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 7 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 9 | 6 8 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤  ∈  𝑦 ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑤 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 11 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 12 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 14 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 16 | 15 6 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧  ∈  𝑤 ) | 
						
							| 17 | 15 8 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧  ∈  𝑦 ) | 
						
							| 18 | 17 | nfnd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ¬  𝑧  ∈  𝑦 ) | 
						
							| 19 | 16 18 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 20 | 13 19 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 21 | 9 20 | nfand | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 22 | 10 21 | nfexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 23 | 9 22 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑤  ∈  𝑦  →  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  𝑤  =  𝑥 ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( 𝑤  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 26 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑤 ) | 
						
							| 27 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 29 | 26 28 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑤  =  𝑥 ) | 
						
							| 30 | 13 29 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 ) | 
						
							| 31 | 24 | eleq2d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 32 | 31 | imbi1d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 )  ↔  ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 33 | 30 32 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 34 | 25 33 | anbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 35 | 34 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 36 | 5 21 35 | cbvexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 38 | 25 37 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( 𝑤  ∈  𝑦  →  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) )  ↔  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 39 | 38 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ( 𝑤  ∈  𝑦  →  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) )  ↔  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) ) ) | 
						
							| 40 | 5 23 39 | cbvald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∀ 𝑤 ( 𝑤  ∈  𝑦  →  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑤  →  ¬  𝑧  ∈  𝑦 ) ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 41 | 2 40 | mpbii | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 42 | 41 | 19.21bi | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 43 | 42 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) ) | 
						
							| 44 |  | elirrv | ⊢ ¬  𝑥  ∈  𝑥 | 
						
							| 45 |  | elequ2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑥  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 46 | 44 45 | mtbii | ⊢ ( 𝑥  =  𝑦  →  ¬  𝑥  ∈  𝑦 ) | 
						
							| 47 | 46 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ¬  𝑥  ∈  𝑦 ) | 
						
							| 48 | 47 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 49 |  | axregndlem1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 50 | 43 48 49 | pm2.61ii | ⊢ ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) |