Metamath Proof Explorer


Theorem axrepprim

Description: ax-rep without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010)

Ref Expression
Assertion axrepprim ¬x¬¬y¬zφz=yz¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx

Proof

Step Hyp Ref Expression
1 axrepnd xyzφz=yzyzxxzxyyφ
2 df-ex yzφz=y¬y¬zφz=y
3 df-an zxyyφ¬zxy¬yφ
4 3 exbii xzxyyφx¬zxy¬yφ
5 exnal x¬zxy¬yφ¬xzxy¬yφ
6 4 5 bitri xzxyyφ¬xzxy¬yφ
7 6 bibi2i yzxxzxyyφyzx¬xzxy¬yφ
8 dfbi1 yzx¬xzxy¬yφ¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx
9 7 8 bitri yzxxzxyyφ¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx
10 9 albii zyzxxzxyyφz¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx
11 2 10 imbi12i yzφz=yzyzxxzxyyφ¬y¬zφz=yz¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx
12 11 exbii xyzφz=yzyzxxzxyyφx¬y¬zφz=yz¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx
13 df-ex x¬y¬zφz=yz¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx¬x¬¬y¬zφz=yz¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx
14 12 13 bitri xyzφz=yzyzxxzxyyφ¬x¬¬y¬zφz=yz¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx
15 1 14 mpbi ¬x¬¬y¬zφz=yz¬yzx¬xzxy¬yφ¬¬xzxy¬yφyzx